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The multigrid method is among the most efficient itera-
tive methods to solve linear systems arising from discretiz-We combine a compact high-order difference approximation with

multigrid V-cycle algorithm to solve the two-dimensional Poisson ing elliptic differential equations. It solves the error correc-
equation with Dirichlet boundary conditions. This scheme, along tion (coarse-grid-correction) sub-problem on the coarse
with several different orderings of grid space and projection opera- grids and interpolates the error correction solution back
tors, is compared with the five-point formula to show the dramatic

to the fine grids. Considerable computational time is savedimprovement in computed accuracy, on serial and vector
by doing major computational work on the coarse grids.machines. Q 1997 Academic Press

One iteration of a simple multigrid V-cycle consists of
smoothing the error using a relaxation technique (e.g.,
Gauss–Seidel, Jacobi), solving an approximation to the1. INTRODUCTION
smooth error equation on a coarse grid, interpolating the

We consider the two-dimensional Poisson equation with error correction to the fine grid, and finally adding the error
Dirichlet boundary conditions, correction into the approximation. An important aspect of

the multigrid method is that the coarse grid solution can
2Du(x, y) 5 f(x, y), (x, y) [ V,

(1)
be approximated by recursively using the multigrid idea.
That is, on the coarse grid, relaxation is performed to

u(x, y) 5 g(x, y), (x, y) [ V. reduce high frequency errors followed by the projection
of a correction equation on yet another coarser grid, and

Here D 5 2/x2 1 2/x2 is the two-dimensional Laplace so on. Thus, the multigrid method requires a series of
operator and V is a bounded convex domain. When (1) different problems to be solved on a hierarchy of grids
is solved by finite differences, the most commonly used with different mesh sizes. Each coarse grid provides a
approximation is the five-point formula (FPF ): coarse-grid-correction to the solution on the next fine grid.

A multigrid V-cycle is the process that goes from the finest
4ui, j 2 [ui, j11 1 ui, j21 1 ui11, j 1 ui21, j] 5 h2fi, j , (2) grid down to the coarsest grid and back from the coarsest

up to the finest. We summarize one iteration of this proce-
where h is the uniform meshsize. The approximation (2) dure in Fig. 1. A common variation of the V-cycle is to do
has a truncation error of order h2. An approximation of two correction cycles at each level before returning to the
order h4 can also be used to solve (1): next finer level; this is the W-cycle. However, in this paper,

we restrict our attention to the multigrid V-cycle. A V(1,1)-
20ui, j 2 4[ui, j11 1 ui, j21 1 ui11, j 1 ui21, j] cycle is a multigrid V-cycle algorithm which performs one

relaxation at each level before projecting the residual to2 [ui11, j11 1 ui11, j21 1 ui21, j11 1 ui21, j21] (3)
the coarse grid space (presmoothing) and performs one
relaxation after interpolating the solution back to the fine

5
h2

2
[ fi11, j 1 fi21, j 1 fi, j11 1 fi, j21 1 8fi, j]. grid space (postsmoothing). For more details on multigrid,

readers are referred to [3, 7, 20] and the reference therein.
Figure 1 indicates that the solution on the coarsest gridThis compact nine-point formula (NPF ) is generally

called ‘‘Mehrstellen’’ and has been known for many years is obtained by a direct method. Because there are few
unknowns on the coarsest grid, the cost of the direct[8, 16]. In recent years, several authors have derived high-

order finite difference approximations to solve various par- method is minimal. In practice, we carry out a few relax-
ation sweeps on the coarsest grid to avoid coding a di-tial differential equations (e.g., [11, 12, 17]), all of which

reduce to (3) for the case of the Poisson equation. rect solver.
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PROGRAM MG( f h, uh, h) to solve the system of linear equations has the smallest smoothing factor. However, there seems
Ahuh 5 f h. to be no reported result on the practical implementation
if (h 5 coarsest ) then u r Ah21f h (Use direct solver on the coarsest grid.) and tests of NPF for the Poisson equation.
else For two-dimensional Poisson equation with FPF , the

u r relax( f, u, h) most cost-effective smoother in multigrid V-cycle is proba-
r r f 2 Au

bly the Gauss–Seidel relaxation with red–black orderingr r Pr (P is a projection operator from fine to coarse grids.)
of grid space (RBGS) [19, p. 85]. In practice, half-injectionv r 0

v r MG(r, v, 2h) projection (HI) and bi-linear interpolation are commonly
u r u 1 Iv (I is an interpolation operator from coarse to fine grids.) employed for FPF . Few multigrid practitioners have re-
u r relax( f, u, h) ported results with NPF . (Some people even mistakenly

end if
think that NPF converges only when a damped Jacobi

FIG. 1. One iteration of a multigrid V-cycle. relaxation, full-weighting projection and four-color order-
ing of grid space are used.) In this paper, Gauss–Seidel
relaxation and bi-linear interpolation operator are used in
all cases, but different orderings of grid space and projec-Iyengar and Goyal [15] used the fourth-order difference

schemes with multigrid algorithm to solve three-dimen- tion operators are tested and compared. Standard coarsen-
ing (the coarse grid meshsize is double of the fine gridsional Poisson equation in cylindrical coordinates. They

tested V-cycle and a so-called ‘‘sawtooth’’(S-)cycle algo- meshsize) is used in all cases. Our numerical experiments
show that NPF is superior to FPF in both accuracy andrithm and showed that V-cycle and S-cycle algorithms

achieve the same convergence rate, but S-cycle was pre- computational efficiency. Our attention is restricted to
compare NPF and FPF as relaxation methods in standardferred since smaller number of smoothings needs to be

carried out. However, their experiments only employed multigrid V-cycle algorithm. No effort is made to compare
them with other non-standard algorithms.two or three levels of grids and the fourth-order formula

was only used in calculating the residual on the finest grid. This paper is organized as follows: Section 2 gives some
analyses on the cost of implementing NPF with differentA second-order formula was used to do the relaxations on

all levels and calculate the residual on the coarse levels. options of projection operators; the cost is compared with
that of FPF . In Section 3, three test problems are givenIn some sense, this work falls into the category described

by Brandt as ‘‘double discretization’’ (see [5, 6]). and numerical tests are done on both vector and serial
machines. Some concluding remarks and suggestions onNine-point discretization was used by de Zeeuw and

van Asselt [21, 22] to develop a so-called ‘‘Black-Box’’ future research are given in Section 4.
multigrid solver for general linear second-order elliptic
partial differential equations in two dimensions. The solver 2. PROGRAMMING AND COST ANALYSIS
employs ‘‘sawtooth’’ multigrid cycling, matrix-dependent
grid transfers and incomplete line LU relaxation tech- 2.1. Relaxation and Storage Cost
niques.

FPF has five floating-point operations and NPF hasOn vector machines, Barkai and Brandt [2] reported
15 if counted directly from (2) and (3). As the right-handsome experiments on vectorized multigrid Poisson solver
side of (3) is not updated at any step, we may define Fi, j byfor the CDC CYBER 205 machine. They employed the

full multigrid (FMG) method, which used the standard five-
Fi, j 5 As[ fi11, j 1 fi21, j 1 fi, j11 1 fi, j21 1 8fi, j]. (4)point discretization (2), and the red–black Gauss–Seidel

relaxation method. The grid space was colored in a red-
Now (3) becomesblack (checkerboard) fashion. To exploit the vectorization,

the red points are stored together, so are the black points.
Two vectors were used. The relaxation, projection, and 20ui, j 2 4[ui, j11 1 ui, j21 1 ui11, j 1 ui21, j]

(5)interpolation processes were modified properly to max-
2 [ui11, j11 1 ui11, j21 1 ui21, j11 1 ui21, j21] 5 h2Fi, j .imize the benefit of the vector machines (i.e., to form

long vectors).
More information on the development of general The computation of Fi, j for grid points close to the bound-

ary requires the knowledge of f(x, y) on the boundary. Wemultigrid solvers can be found in [1, 14, 18].
Nine-point discretization of the Poisson equation was assume that f(x, y) is extended naturally to V.

To utilize the computational space more efficiently, prac-analyzed extensively by Stüben and Trottenberg [19] in
the context of the smoothing factor. It was shown that, for tical multigrid solvers usually use a long vector to store

ui, j and fi,j (Fi, j) for all the grids (on the coarse grids, ui, j andNPF , four-color ordering of grid space and Gauss–Seidel
relaxation with full-weighting (FW) projection operator fi, j are coarse grid correction and residual, respectively).
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Furthermore, Fi, j, as defined by (4), are only evaluated 3. COMPUTATIONAL ACCURACY AND EFFICIENCY
once on the finest grids and may be stored at the place

Our FPF and NPF multigrid V-cycle programs havewhere FPF stores its fi, j. This can be done when the initial-
essentially the same structure, except for the obvious dif-ization of data is performed. Hence NPF does not require
ferences in relaxation computation and in choosing suitableany more storage space than FPF and a relaxation sweep
projection operators. The programs were coded and de-using NPF (5) has 10 floating-point operations. The codes
bugged on a SUN SPARCstation 11 using FORTRANfor the two solvers are almost identical.
77 programming language in double precision. The sameOur conclusion is that NPF relaxation could cost twice
code is also used on a vector machine Cray C90 (in singleas much as FPF on the same grid space, but requires no
precision, which is equivalent to double precision onmore storage space. This is to say a NPF relaxation sweep
SUN) at the Pittsburgh Supercomputing Center. No extracould take roughly double CPU time.
work is done especially to exploit benefits of vectorization,

2.2. Grid Transfer Cost all such work being left to be done by the Cray
FORTRAN compiler.

The cheapest projection operators are probably by injec-
We used the following three test problems on a unit

tions of some kind. The residuals corresponding to the
square to test the performance of the multigrid solvers on

coarse grid points are injected (projected) to the coarse
both serial and vector machines and applied the multigrid

grid space. Only those residuals needed to be injected are
V(1,1)-cycle algorithm with either FPF or NPF for differ-

calculated on the fine grid and the cost is roughly equiva-
ent values of N(51/h) and the stopping criteria «. The

lent to one relaxation on the coarse grid. If the grid space
programs terminated when the absolute residual in L2-is in natural (lexicographic) order, a full-injection (FI) pro-
norm is less than «. The maximum errors reported are the

jection operator may be used. For RBGS, a half-injection
overall absolute discrete errors in Ly-norm. The solution

(HI) projection is commonly used. The residuals are di-
on the coarsest grid for both NPF and FPF are obtained

rectly transferred to the corresponding coarse grid points
by performing two relaxation sweeps on the coarsest grid.

weighted by As. The factor of As is motivated by the fact that
the fine grid residual is zero at black fine grid points; hence TEST PROBLEM 1.
the other residuals should be multiplied by As to represent
the correct average [2, p. 219]. This works for FPF only. f(x, y) 5 2x2(1 2 x2)(2 2 12y2) 2 y2(1 2 y2)(2 2 12x2);
For NPF with RBGS, the grid space is not completely

g(x, y) 5 x2y2(1 2 x2)(1 2 y2).de-coupled and the half-injection may not be accurate.
More accurate projection operators are full-weighting

TEST PROBLEM 2.(FW) and half-weighting (HW). The residuals are com-
puted on all of the fine grid points (the cost is roughly

f(x, y) 5 2(x2 1 y2)exy;equivalent to one relaxation sweep on the fine grid) and
weighted to the coarse grid points by the formulas g(x, y) 5 exy.

ri/2, j/2 5 [4ri, j 1 2(ri11, j 1 ri21, j 1 ri, j11 1 ri,j21)
(6)

TEST PROBLEM 3.

1 (ri11, j11 1 ri11, j21 1 ri21, j11 1 ri21, j21)]/16
f(x, y) 5 52 cos(4x 1 6y);
g(x, y) 5 cos(4x 1 6y).for FW and

3.1. Performance Comparison on Cray C90ri/2, j/2 5 [4ri, j 1 (ri11, j 1 ri21, j 1 ri, j11 1 ri, j21)]/8 (7)
We first compare NPF with (FW) and FPF with (HI).

Test Problem 1 is solved for « 5 10210. Table I containsfor HW, respectively. Here ri, j is the residual at the fine
grid point (i, j), ri/2, j/2 is the quantity to be transferred to the results.

We note that for the same values of N and «, NPFthe corresponding coarse grid point (i/2, j/2). i and j are
assumed to be even numbers. achieves significantly better accuracy than FPF . The CPU

costs are comparable, which is remarkably better than the aComputational costs of FW and HW are similar as in
both cases, all of the residuals on the fine grid points need priori estimate of Section 2. If we seek a required accuracy,

NPF terminates with fewer iterations and far less CPUto be computed.
For FPF , the general understanding is that HI is the cost by doing computations on coarser grids. For example,

from Table I, NPF achieves overall accuracy of 1026 withmost cost-effective for RBGS. Since the residuals at the
black points are zero. We note that, from (7), HW and HI N9 5 16 in 3.50 3 1023 s with 10 V-cycles. But FPF , with

N5 5 256 and 12 V-cycles, takes almost 290 times moreare the same in this special case. For NPF , FW converges
fastest for RBGS. CPU time. We note that N9 5 ÏN5.
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TABLE I

Performance Comparison on Vector Machine Cray C90

NPF with RBGS and full weighting FPF with RBGS and half injection

N Iteration CPU(s) Max error Iteration CPU(s) Max error

8 09 1.58(23) 1.22(205) 09 1.34(23) 7.64(204)
16 10 3.50(23) 7.96(207) 10 2.79(23) 1.97(204)
32 10 7.29(23) 4.98(208) 11 6.00(23) 4.91(205)
64 10 1.68(22) 3.11(209) 12 1.40(22) 1.23(205)

128 10 4.26(22) 1.93(210) 12 3.42(22) 3.07(206)
256 10 1.32(21) 6.45(212) 12 1.02(21) 7.68(207)

Note. NPF with RBGS relaxation and full-weighting, compared with FPF with RBGS and half-injection for Test Problem 1 with « 5 10210.

Also from Table I, we note that the errors of NPF and ninth columns contain data with natural (lexicographic)
ordering of the grid space and full-injection projection. Alldecrease by a factor of 16 and the errors of FPF decay

by a factor of 4 when N is doubled. Thus NPF solutions the variations give almost the same accuracy.
The results in Table III show that the convergence ofdemonstrate fourth-order convergence and FPF solutions

demonstrate second-order convergence. RBGS with a HI operator deteriorates as the discretization
gets finer. This is not a true multigrid performance. Con-Next, instead of taking the same stopping criterion for

NPF and FPF , we choose «9 5 Ï«5. The results for Test trary to expectation, the complete de-coupling of the relax-
ation sweep with four-color ordering of the grid space doesProblem 2 are given in Table II. Note that, in all cases,

NPF costs less CPU time than FPF , and achieves not help. This is contrary to the theoretic analysis given
by Stüben and Trottenberg [18] which shows that the four-higher accuracy.

Further NPF relaxation, combined with different or- color ordering of the grid space gives the smallest smooth-
ing factor. It seems that the more colors are employed,dering patterns of the grid space and projection operators,

is tested on Test Problem 3 to compare its performance the closer the Gauss–Seidel relaxation tends to the Jacobi
relaxation. The natural (lexicographic) ordering results inand efficiency. Table III gives the V-cycle numbers and

CPU times. The second and third columns contain data the slowest convergence. This agrees with Barkai and
Brandt’s test of FPF [2]. In conclusion, all these modifica-with RBGS and full-weighting projection. The fourth and

fifth columns contain results with two-color red–black or- tions are inefficient, compared with RBGS with a FW
projection operator.dering of the grid space and half-injection projection. The

sixth and seventh columns contain the information with
four-color ordering of the grid space and full-weighting

3.2. Performance Comparison on
projection. In this pattern, the groups of grid points are com-

SUN SPARCstation 11
pletely de-coupled. One Gauss–Seidel relaxation sweep on
the grid space is equivalent to four Jacobi sweeps, each car- The same code and test problems in double precision

have been tested on a SUN SPARCstation 11. Table IVried out on roughly a quarter of the grid points. The eighth

TABLE II

Performance Comparison for Test Problem 2 on Vector Machine Cray C90

NPF RBGS with FW and « 5 1024 FPF RBGS with HI and « 5 1028

N Iteration CPU(s) Max error Iteration CPU(s) Max error

8 06 1.19(23) 1.80(206) 08 1.22(23) 4.60(205)
16 06 2.28(23) 6.60(208) 10 2.78(23) 1.20(205)
32 06 4.59(23) 1.40(207) 12 6.49(23) 3.07(206)
64 07 1.21(22) 1.39(208) 13 1.49(22) 7.69(207)

128 07 3.18(22) 1.87(208) 14 3.96(22) 1.92(207)
256 08 1.12(21) 1.59(209) 14 1.13(21) 4.80(208)

Note. Red–black Gauss–Seidel relaxation and full-weighting are used for NPF with « 5 1024, compared with red–black Gauss–Seidel relaxation
and half-injection for FPF with « 5 1028.
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TABLE III

Performance Comparison on Vector Machine Cray C90

RBGS and FW RBGS and HI 4-color and FW Natural and FI

N Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

8 09 1.53(23) 09 1.50(23) 09 2.25(23) 10 2.11(23)
16 09 3.20(23) 12 3.86(23) 11 5.85(23) 13 8.19(23)
32 10 7.31(23) 15 9.88(23) 11 1.29(22) 14 3.12(22)
64 10 1.66(22) 18 2.70(22) 12 3.13(22) 15 1.27(21)

128 10 4.27(22) 22 8.28(22) 12 7.49(22) 16 5.28(21)
256 11 1.40(21) 26 2.92(21) 13 2.25(21) 17 2.22(10)

Note. Different orderings of grid space and different projection operators using with NPF for Test Problem 3 with « 5 1028. RBGS stands for
red–black Gauss–Seidel relaxation, FW for full-weighting, HI for half-injection, FI for full-injection; 4-color for four-color ordering of grid space,
Natural for natural (lexicographic) ordering of grid space.

contains the results for Test Problem 1. The numbers of and efficient than FPF on serial machines if a FW projec-
tion operator is employed.V-cycles and the maximum errors do not vary very much.

We conclude this section with some remarks.Again, NPF relaxation with full-weighting achieves great
accuracy improvement over FPF with half-injection, al- Remark 1. If both (2) and (5) are evaluated on the
though the CPU time is increased by about 50%. To achieve same grid N with the same stopping criterion «, we expect
the overall accuracy of 1026, we need N 5 256 and 202 s NPF to give much higher accuracy than FPF with compa-
with FPF . On the other hand, we need only N 5 16 and rable CPU cost.
0.81 s of CPU time with NPF . In this case, NPF is almost Remark 2. If we want to solve (2) and (5) on the same
250 times faster than FPF to obtain the same accuracy. grid N and expect comparable CPU cost, we may be able

Different orderings of grid space and projection opera- to set a lower stopping criterion, say «9 for (5), and a higher
tors, combined with NPF relaxation, are also tested for one, say «5 for (2). We may use «9 5 Ï«5. In this case,
Test Problem 2. Table V contains the results for RBGS

NPF will give better accuracy.
with full-weighting (columns 2 and 3), RBGS with half-
injection (column 4 and 5), and natural ordering GS with 4. CONCLUSIONS AND FUTURE RESEARCH
full-injection (columns 6 and 7). Again, RBGS with full-
weighting is the most efficient; other modifications deterio- We have shown that the nine-point discretization for-

mula, combined with full-weighting projection operator,rate the convergence rate.
Finally, we choose «9 5 Ï«5 for NPF and FPF , respec- is much more accurate than the five-point discretization

formula, on both vector and serial machines. The interest-tively. The results for Test Problem 3 are given in Table
VI. Note that NPF costs almost the same as FPF , but it ing conclusions from our tests are that NPF is even more

attractive on vector machines as the higher accuracy isachieves much higher accuracy.
All of our tests show that NPF is much more accurate achieved with almost the same computational cost as FPF .

TABLE IV

Performance Comparison between FPF and NPF for Test Problem 1 on SUN SPARCStation

NPF with RBGS and full weighting FPF with RBGS and half injection

N Iteration CPU(s) Max error Iteration CPU(s) Max error

8 09 1.60(21) 1.22(205) 09 9.00(22) 7.64(204)
16 10 8.10(21) 7.96(207) 10 4.30(21) 1.97(204)
32 10 3.78(10) 4.98(208) 11 2.19(10) 4.91(205)
64 10 1.67(11) 3.11(209) 12 1.07(11) 1.23(205)

128 10 7.20(11) 1.94(210) 12 4.53(11) 3.07(206)
256 10 2.92(12) 1.22(211) 13 2.02(12) 7.68(207)

Note. RBGS relaxation with full-weighting projection is used for NPF , RBGS relaxation with half-injection is used for FPF ; « 5 10210.
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TABLE V

Performance Comparison on SUN SPARCStation among Different Orderings of Grids Using NPF for Test Problem 2
with « 5 1028

2-color and 2-color and Natural and
full weighting half injection full injection

N Iteration CPU(s) Iteration CPU(s) Iteration CPU(s)

8 09 1.70(21) 08 1.10(21) 10 1.40(21)
16 09 7.20(21) 12 7.60(21) 13 8.10(21)
32 10 3.77(10) 15 4.40(10) 15 4.38(10)
64 10 1.68(11) 19 2.47(11) 16 2.08(11)

128 10 7.09(11) 23 1.27(12) 17 9.37(11)
256 11 3.21(12) 27 6.15(12) 18 4.10(12)

Note. Gauss–Seidel relaxation is used in all cases.

It will be interesting to test fully vectorized or paral- Golub and Tuminaro [9] used a cyclic reduction to precon-
dition FPF ; the resulting reduced problem is a (non-com-lelized high-order discretization schemes on vector and

parallel machines, as Barkai and Brandt did for the five- pact) nine-point formula which is solved by multigrid.
However, there exist some compact nine-point formulaspoint scheme [4, 2].

Another promising direction is to combine the fourth- similar to (3) for the convection–diffusion equation [10,
11]. Our initial computations show that these compactorder and second-order schemes in a multigrid algorithm

to exploit the full efficiency of these two schemes and to nine-point formulas with multigrid are convergent for any
convection–diffusion equations. No preconditioner isdesign more cost-effective schemes. This has been dis-

cussed in the context of double discretization, in which the needed. Encouraging results in this direction have been
obtained and will be reported separately [13].high-order formula is used to compute the residual. We

think using high-order formula for coarse grid relaxation
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